Charger/ Inverter 4K&5K Service manual

Table of contents

1. General information 3
1.1 Getting start 3
1.2 Basic topology introduction 3
1.3 Overview the inverter
2. Troubleshooting
2.1 How to do 5
2.2 Fault condition 5
2.3 Test step
3. Checking and measuring guide12
3.1 Check the battery side components 12
3.2 Check the bus side components 18
3.3 Check the buck circuit 20
3.4 Check the INV full bridge 22
3.5 Check the bus soft start circuit (TX2: Especially for 09 fault)
3.6 Check the AC switching power supply circuit 26
3.7 Check the battery switching power supply circuit
3.8 Check the reversed protection MOSFETs on DC side 31
3.9 Check the current sharing module of control board 33
3.10 Check the NTC circuit 34
3.11 Check the fan driver on the main board
4. Assembling guide
4.1 INVERTER PWM 4KVA/5KVA 39
4.2 INVERTER MPPT 4KVA/5KVA (OLD VERISON)
4.3 INVERTER MPPT 4KVA/5KVA (NEW VERISON)51
5. Common fault case
5.1 DC-DC mosfet damaged55
5.2 Bat SPS module damaged56
5.3 MOV (Metal oxide varistors) damaged 57
5.4 AC SPS module damaged 58

1. General information

1.1 Getting start

This manual is used as a checking and repairing guide for INVERTER PWM&MPPT 4KVA/5KVA. Before read this manual, it's best to have some electrical or electronic background knowledge. With this guide, you can fix the inverter by yourself firstly.

There are five main parts of this guide:

General information: This part is the basic information of the inverter; you can start to know the inverter from this chapter.

Troubleshooting: This part will tell you how to do when you face a problem.

Checking and measuring guide: This part will teach you how to check or repair the inverter by measuring the critical components.

Assembling guide: This part teaches you how to take the board outside and fix the new one.

Common fault case: This part will show some actual field failure cases.

1.2 Basic topology introduction

The topology of INVERTER 4K&5K shows as below:

Compare with UPS or normal inverter, INVERTER combines a solar charger inside. Solar charger can be a supplement for battery when there is not grid or for saving energy purpose. And with the solar charger, the inverter can derive more working modes than UPS. The detail you can refer to our user manual.

1.3 Overview the inverter

PWM:

MPPT (OLD VERSION):

LCD board	
SCC board	
Main board	
PAR board	
Control board	

MPPT (NEW VERSION):

The difference between PWM and MPPT is the SCC board. MPPT has SCC with MPPT function, PWM just has the basic SCC function. The other boards are the same. Regarding the control board, the board is the same, just the firmware is different.

The difference between OLD and NEW MPPT is the SCC BOARD. The NEW MPPT redesigns the SCC board to make the metal case the same size with PWM.

2. Troubleshooting

2.1 How to do

When the inverter was faulty, normally there are two main symptoms:

- No display at all;
- > Fault code or warning code on the LCD;

When the fault occurred, please help to record the fault information and follow "How to check" of part 2.2 to check the inverter, then feedback the checking result to the service center. It will be very helpful for solving the problem as soon as possible.

2.2 Fault condition

Note:

When open the top cover, please have a look first, are there any obviously damaged parts? When take the main board out, please have a look around, are there any obviously damaged parts? parts?

2.2.1. Not working at all/ No display

Description	The inverter couldn't startup completely.
Possible reason	There may be something wrong with SPS module.
How to check	1. Firstly, please measure the resistor between BAT+ and BAT If it is not shorted,
	only connect the inverter with battery, and press "ON" button, could the inverter
	startup?
	2. If the first step is NG, please disconnect all the wires and open the top cover, and
	then take the main board outside by following part 4.
	3. Check the main board by following "3.7"
How to solve	Repair the main board or replace it directly.

2.2.2. 01 fault

Description	Fan abnormal.
Possible reason	There was something wrong with fans or the fan driver has something wrong.
How to check	Replace the fans first, if the issue still exist, please check the main board by
	following "3.11".
How to solve	Replace the fan or repair the main board.

2.2.3. 02 fault

Description	Over temperature.
Possible reason	The NTC is broken.
How to check	Check the inverter by following "3.10"
How to solve	Replace the NTC and resistors.

2.2.4. 03 fault

Description	Battery voltage is too high.
Possible reason	Reason1: The reverse mosfet was damaged
	Reason2: Firmware bug.
	Reason3: TX9 has something wrong.
How to check	When the fault happened, please read the battery voltage in the LCD first, and
	compare with the actual battery voltage.
	Reason1: Check the inverter by following "3.8"
	Reason3: Check the inverter by following "TX9 in 3.7"
How to solve	Replace the mosfet or the main board if the reason is 1 or 3.
	Update the firmware if the reverse mosfet was OK.

2.2.5. 06 fault

Description	Output voltage is too high
Possible reason	It depends; maybe the inverter module had something wrong.
How to check	1. Startup the inverter only with battery, will the fault come out again? If not, please
	provide the situation when will the fault occur?
	2. If the fault repeated even without load, please check the main board by following
	"3.4"
How to solve	Replace the main board.

2.2.6. 08 fault

Description	Bus voltage is too high
Possible reason	Firmware bug.
How to check	Restart the inverter, will the fault repeat?
How to solve	Update the firmware

2.2.7. 09 fault

Description	Bus soft start fails.
Possible reason	DC-DC module was damaged or bus soft start module was damaged.
How to check	1. Check the main board by following "3.1.2; 3.2.1; 3.4.1";
	2. Check the main board by following "3.5".
How to solve	Repair the main board or replace it directly.

2.2.8. 52 fault

Description	Bus voltage is too low
Possible reason	It depends; maybe the inverter module had something wrong.
How to check	1. Startup the inverter only with battery, will the fault come out again? If not, please

2.2.9. 53 fault	
How to solve	Repair the main board or replace it directly.
	"3.1.2 and 3.4"
	2. If the fault repeated even without load, please check the main board by following
	provide the situation when will the fault occur?

Description	Inverter soft start failed.
Possible reason	
How to check	1. Startup the inverter only with battery, will the fault come out again? If not, please
	provide the situation when will the fault occur?
	2. Connect the grid and battery, could the inverter charge the battery?
	3. If step 1 and 2 are both not OK, please check the main board by following "3.1.2,
	3.2.1 and 3.4.1".
How to solve	Replace the main board.

2.2.10. 56 fault

Description	Battery couldn't be detected.
Possible reason	Wire connection or fuse was burnt.
How to check	1. Check the wire connection, the priority of the battery cable;
	2. Check the main board by following "3.1.1 and 3.1.2".
How to solve	Repair the main board or replace it directly.

2.2.11. 57 fault

Description	Current sensor is abnormal.
Possible reason	The control board was damaged.
How to check	Check the control board by following "3.9".
How to solve	Replace the control board.

2.2.12. 58 fault

Description	Output voltage is too low.
Possible reason	
How to check	1. Startup the inverter only with battery, will the fault come out again? If not, please
	provide the situation when will the fault occur?
	2. Connect the grid and battery, could the inverter charge the battery?
	3. If step 1 and 2 are both not OK, please check the main board by following "3.1.2,
	3.2.1 and 3.4.1".
How to solve	Replace the main board.

2.2.13. 72 fault

Description	Current sensor is abnormal.
Possible reason	The control board was damaged.
How to check	Check the control board by following "3.9".
How to solve	Replace the control board.
2.2.14. 85 fault	
Description	Current unbalance between the inverters when working in parallel mode.
Possible reason	Most situations were due to the inappropriate wire connection
How to check	Please help to check the AC input and output, the cables of two inverters should be
	the same size and same length, and they should connect together to the
	distributor. And please also check the connectors, have they been screwed tightly?
How to solve	Modify the wire connection.

2.3 Test step

After replacing all defected components, testing steps can be adopted to verify the repair result and the reliability of the Inverter.

Test equipment:

Equipment	Figures for example	Parameter requirement	
Battery or DC source	or	48V/200AH or 48V/200A	
PV simulator or DC source	or or	80V/20A	
AC source or utility	or or	230V/50Hz	
Power meter	15038 52109 72359 8000 8000 8000 8000 8000 8000 8000 80	The meter can measure DC and AC voltage, current and frequency. The voltage range should be 300V or above. The current range should be more than 30A.	

RCD load

500	0VA/4000W	,	

Set up the testing system as below:

2.3.1 Battery working mode test

2.3.1.1 Test and check

- > Connect the battery and switch on the inverter.
- > Wait for the inverter starts up and gives the load.
- Check the LCD display and power meter, and record the output voltage and frequency both on LCD and power meter A.
- > Add 5KVA/4KW RCD load to the inverter, and record the parameters listed as below:

LCD: Output voltage and frequency; Load percentage; Load in VA; Load in Watt.

Load side power meter: Voltage and frequency; power in watt; power in VA.

- Turn off the load.
- > Turn on the load for 1~3s and turn off the load for 1~3s, repeat it for 5 times, and then check the

output voltage and frequency again. After this test, the inverter shouldn't have any fault.

Note: Please pay attention to the battery capacity; don't let the battery discharge too low, you can use an inverter as a charger to charge the battery when doing this test.

2.3.1.2 Confirm

The LCD display is shown as below:

Please check the test result whether can meet with parameters listed as below:

	Voltage	Frequency	Load%	VA	W
LCD	230V	50Hz	100%	5000VA	4000W
Power meter A	230V	50Hz	N/A	5000VA	4000W

Note: The tolerance of voltage is about ±1%, and of frequency is about ±0.1Hz. Regarding load, it depends on the actual load you have given. Please read the actual load from power meter, and then compare the load values on LCD with the meter. The tolerance of power VA/W between LCD and power meter is less than ±5%.

2.3.2 Line working mode test

2.3.2.1 Test and check

- Switch off the load.
- > Set AC source to 230V/50Hz, and then turn on.
- > Wait for inverter transfer to line mode and charge the battery.
- > Check the LCD to confirm that inverter is working in line mode.
- > Record the charging current from power meter B.

2.3.2.2 Confirm

The LCD display is shown as below:

The charging current is more than 5A.

Note: If the charging current couldn't increase to more than 5A, please check the battery voltage. If the battery is fully charged, please discharge the battery by other inverter, and check the charging current again.

2.3.3 SCC charging

2.3.3.1 Test and check

- > Turn off the ac source; the inverter will transfer to battery mode again.
- > Set PV simulator to 80V/20A, and then turn on.
- > Wait for PV charges the battery, and check the LCD display.
- > Wait for 2 minutes; record the charging current from power meter B.

2.3.3.2 Confirm

The LCD display is shown as below:

The charging current is more than 5A.

Note: If the charging current couldn't increase to more than 5A, please check the battery voltage. If the battery is fully charged, please discharge the battery by other inverter, and check the charging current again.

3. Checking and measuring guide

3.1 Check the battery side components

3.1.1. Fuse and capacitors

- F1: 25-000148-00G (FUSE LITTELFUSE/142.5631.6202 200A 58V FAST 42*12) or 32-000065-00G
 - (BUS BAR COPPER 42*12*0.6)

Parts	Attribute	Reference values	Failure status
F1	Resistor	0 ohm	Open

C12/C13/C8/C9: 15-000072-00G (C-AL 3300UF 63V M RAD BULK 7.5 105°C 18*45.5)

If the capacitors explode as below, they need to be replaced.

3.1.2. Power devices

DC/DC MOSFET: Q11/Q17/Q20/Q24 & Q38/Q21/Q22/Q12 & Q13/Q18/Q23/Q19 & Q40/Q26/Q25/Q14

ALL of the mosfet are 11-320110-00G (MOSFET IR/IRFB3307ZPBF 120A 75V N BULK TO-220).* *: In the new version, they will be 11-320138-00G (MOSFET TI/CSD19505KCS 201A 80V N BULK TO-220) or 11-320117-00G (MOSFET IR/IRFB3077 210A 75V N BULK TO-220).

Parts	Attribute	Reference values	Failure status
All: IRFB3307ZPBF	Resistor ¹	GS: 11.7k	Short or explosion
		GD: 250k	
		DS: OL	
	Diode	SD: 0.43V	
		DS: OL	

Note1: When you use the multimeter to measure the resistor of the transistor, because of the capacitor in the circuit, it will cause the changing of the values when you measure the DS and GD. So we recommend you measure the diode forward voltage of SD, and the resistor of GS. These two values can reflect the situation of the transistor more correctly.

Note: If one or more of them were damaged, please replace all of them.

Note: For 4K, Q19/Q24/Q38/Q40 is N/A.

3.1.3. Drivers (This part is only used for repair checking)

Note: Drivers usually need to be checked when users want to repair the boards. Because when power devices were damaged, the high voltage will rush to driver circuit through the gates of power devices.

The reference of the resistors list as below:

R41/R59/R70/R76/R80/R78/R75/R42/R52/R62/R81/R64/R93/R92/R87/R53

All of the resistors are 14-110022-00G (RES CHIP TF 1/4W 22 F 1206)

Inverter 4KVA/5KVA

Use multimeter to measure each resistor, find the burnt resistors and replace them; don't need to replace

them all.

Parts	Attribute	Reference values	Failure status
All: 220hm	Resistor	22 ohm	Open or other values

If the resistors need to be replaced, please also check the driver transistors and control IC.

The Q46and Q48 are 11-300012-00G (TR UTC/2SC2655 2A 50V NPN TAP TO-92) The Q47and Q49 are 11-300005-00G (TR UTC/A1020 2A 50V PNP TAP TO-92NL)

The Q41and Q43 are 11-300012-00G (TR UTC/2SC2655 2A 50V NPN TAP TO-92)

The Q15and Q16 are 11-300005-00G (TR UTC/A1020 2A 50V PNP TAP TO-92NL)

Parts	Attribute	Reference values	Failure status
Q46/Q48/Q41/Q43	Resistor	BE: 420k	Short or explosion

Inverter 4KVA/5KVA

		BC: 420k	
		CE: 30k	
	Diode	BE: 0.6V	
		BC: 0.6V	
		CE: 2.3V	
Q47/Q49/Q15/Q16	Resistor	BE: 420k	Short or explosion
		BC: 420k	
		CE: 1.2k	
	Diode	BE: 0.6V	
		BC: 2.6V	
		CE: 0.2V	

The Q54and Q56 are 11-400011-00G (TR UTC/2SD1624 2A 50V NPN SOT-89) The Q55and Q57 are 11-400010-00G (TR UTC/2SA1020 3A 50V PNP SOT-89)

The Q51and Q52 are 11-400011-00G (TR UTC/2SD1624 2A 50V NPN SOT-89) The Q50and Q53 are 11-400010-00G (TR UTC/2SA1020 3A 50V PNP SOT-89)

PartsAttributeReference valuesFailure statusQ54/Q56/Q51/Q52ResistorBE: 12k
BC: 260k
CE: OLShort or explosionDiodeBE: 0.6VShort or explosion

Inverter 4KVA/5KVA

		BC: 0.6V CE: OL	
Q55/Q57/Q50/Q53	Resistor	BE: 12k	Short or explosion
		BC: OL	
		CE: 277k	
	Diode	BE: 0.6V	
		BC: OL	
		CE: 1.09V	

The Q60and Q61 are 11-420007-00G (MOSFET UTC/UT3404G 5.8A 30V NPN SOT-23 SMD)

Parts	Attribute	Reference values	Failure status
Q60/Q61	Resistor	GS: 5.637k	Short or explosion
		GD: 12k	
		DS: 35k	
	Diode	SD: 0.184V	
		DS: 1.2V	

The U9 is 11-004003-00G (IC PWM CNTL ON/SG3525ANG DIP-16)

Parts	Attribute	Reference values	Failure status
U9	Resistor	PIN13 TO PIN12: 22k	Short or explosion
		PIN11 TO PIN12: 432k	
		PIN14 TO PIN12: 432k	
Note: If you are not sure about these components, we recommend you replacing them all.			

3.2 Check the bus side components

3.2.1. Power devices

DC/DC IGBT: Q27/Q28/Q29/Q30

ALL of the IGBTs are 11-330035-00G (IGBT IRGP/4063DPBF 48A 600V NPN BULK TO-247) or

11-330095-00G (IGBT IR/IRGP4750DPBF 50A 650V N BULK TO-247)

Parts	Attribute	Reference values	Failure status
Q27/Q28/Q29/Q30	Resistor ¹	GE: 22 ohm	Short or explosion
		GC: 181k	
		CE: 1 Meg	
	Diode	EC: 0.37V	
		CE: OL	

Note1: When you use the multimeter to measure the resistor of the transistor, because of the capacitor in the circuit, it will cause the changing of the values when you measure the CE and GE. So we recommend you measure the diode forward voltage of EC, and the resistor of GE. These two values can reflect the situation of the transistor more correctly.

Note: If one or more of them were damaged, please replace all of them.

3.2.2. Drivers (This part is only used for repair checking)

Meanwhile, we also need to check the driver tubes of these power tubes. R91/R102/R96/R101: 14-110022-00G (RES CHIP TF 1/4W 22 F 1206) R90/R99/R94/R97: 14-110000-00G (RES CHIP TF 1/4W 0 F 1206)

D32/D35/D33/D34: 11-210001-00G (D PAJ 1N4148W 0.15A 75V SMD)

Parts	Attribute	Reference values	Failure status
R91/R102/R96/R101	Resistor	22 ohm	Open or other values
R90/R99/R94/R97	Resistor	0 ohm	
D32/D35/D33/D34 ²	Resistor	+ to -: 240k	Short or explosion
		- to +: OL	
	Diode	+ to -: 0.6V	
		- to +: OL	
Note2: When test the diade; places remove the P00/P00/P01/P07 from the heard, or the test result is not			

Note2: When test the diode; please remove the R90/R99/R94/R97 from the board, or the test result is not

Inverter 4KVA/5KVA

right.

3.3 Check the buck circuit

3.3.1. Power devices

BUCK MOSFET and Diode: Q31/Q32/D13

The Q31and Q32 are 11-320049-00G (MOSFET ST/STW45NM60 45A 600V N BULK TO-247) or

11-330095-00G (IGBT IR/IRGP4750DPBF 50A 650V N BULK TO-247)

The D13 is 11-200007-00G (D APT/30DQ60BG 30A 600V UFST RAD TO-247 BULK) or 11-200167-00G (D FSC/FFH30S60S 30A 600V UFST RAD TO-247 BULK)*

*: In the new version (Main board: 71-500449-xxG), it will be 11-200032-00G D FC/RHRP1560 15A 600V UFST RAD BULK.

Parts	Attribute	Reference values	Failure status
Q31/Q32	Resistor	GS or GE: 23.5k	Short or explosion
		GD or GC: 273k	
		DS or CE: 800k	
	Diode	SD or CE: 0.44V	
		DS or EC: OL	
D13	Resistor	+ to -: 168k	

Inverter 4KVA/5KVA

		to u Ol	
		- 10 + . OL	
	Diode	+ to -: 0.36V	
		- to +: OL	
Note: If one or more of them were damaged, please replace all of them.			

3.3.2. Drivers (This part is only used for repair checking)

R125/R106:	14-110047-00G (RES CHIP TF 1/4W 47 F 1206)
R124/R103:	14-110010-00G (RES CHIP TF 1/4W 10 F 1206)

Parts	Attribute	Reference values	Failure status
R125/R106	Resistor	47 ohm	Open or other values
R124/R103	Resistor	10 ohm	
D36/D38 ¹	Resistor	+ to -: 240k	Short or explosion
		- to +: OL	
	Diode	+ to -: 0.6V	
		- to +: OL	

Note: When test the diode; please remove the R124/R103 from the board, or the test result is not right.

3.4 Check the INV full bridge

3.4.1. Power devices

INV IGBT: QA1/QC1/QB2/QD2

All of the IGBT are 11-330080-00G (IGBT IR/IRGP4066D-EPBF 75A 600V N BULK TO-247)

Parts	Attribute	Reference values	Failure status
QA1/QC1/QB2/QD2	Resistor	GE: 23k	Short or explosion
		GC: 235k	
		CE: 900k	
	Diode	EC: 0.4V	
		CE: OL	

Note1: If one or more of them were damaged, please replace all of them.

Note2: For 4K, QA1~QD2 is 11-330035-00G (IGBT IRGP/4063DPBF 48A 600V NPN BULK TO-247)

3.4.2. Drivers

R48/R144/R140/R137/R139/R145/R150/R152: 14-110047-00G (RES CHIP TF 1/4W 47 F 1206) D5/D6/D12/D16: 11-210001-00G (D PAJ 1N4148W 0.15A 75V SMD)

Parts	Attribute	Reference values	Failure status
R48/R144/R140/R137	Resistor	47 ohm	Open or other values
R139/R145/R150/R152			
D5/D6/D12/D16 ¹	Resistor	+ to -: 240k	Short or explosion
		- to +: OL	
	Diode	+ to -: 0.6V	
		- to +: OL	

Note 1: When test the diode; please remove the R139/R145/R150/R152 from the board, or the test result is not right.

Optocoupler: U1/U2/U3/U4/U12

ALL of the optocoupler are 11-140006-00G(IC PHO AVAGO/T350-560E DIP-8 8/300 MIL SMD)

Parts	Attribute	Reference values	Failure status
-------	-----------	------------------	----------------

Inverter 4KVA/5KVA

U1/U2/U3/U4/U12	Resistor	PIN8 TO PIN5: 2k	Short or explosion
		PIN7 TO PIN5: 2k	

3.5 Check the bus soft start circuit (TX2: Especially for 09 fault)

D73: 11-200026-00G (D PAJ/UF202 2A 200V UFST AXI TAP)

Q6: 11-320050-00G (MOSFET IR/IRF840 8A 500V N BULK TO-220)

R251: 14-600005-00G (RES 2W 0.62 J RAD N-IND BULK)

D65: 11-200023-00G (D FC/RHRP8120 8A 1200V UFST RAD BULK)

R245: 14-110022-00G (RES CHIP TF 1/4W 22 F 1206)

Note: If R245 is damaged, please replace U16 together.

Parts	Attribute	Reference values	Failure status
D73	Resistor	+ to -: 300k	Short or explosion
		- to +: OL	
	Diode	+ to -: 0.47V	
		- to +: OL	
Q6	Resistor	GS: 1.17k	Short or explosion
		GD: 30k	
		DS: OL	
	Diode	SD: 0.5V	
		DS: OL	
R251	Resistor	0.8 ohm	Open or other values
D65	Resistor	+ to -: 1 Meg	Short or explosion
		- to +: 1 Meg	
	Diode	+ to -: 0.44V	
		- to +: OL	
R245	Resistor	22 ohm	Open or other values
U16	Resistor	PIN7 TO PIN5: 42k	Short or explosion
		PIN6 TO PIN5: 30k	

TX2: 41-070186-01G (TX 15:200:15 FER EEL16)

Note: Please check the part number of TX2 first; we have two versions, 00G and 01G.

When 09 fault happens, and you couldn't find other damage, please check TX2!!

3.6 Check the AC switching power supply circuit

Note: This part only available for 16-500242-XXG PCB version.

D17/D18/D20/D21: 11-200004-01G (D PAJ IN4007S 1A 1000V FST AXI TAP)

Q37: 11-320046-00G (MOSFET VISHAY/IRFBG30 3.1A 1000V N BULK TO-220)

C87: 15-000048-00G (C-AL 33UF 450V M RAD BULK 7.5 105°C JAMICON 16*32)

C87 explodes as below, it needs to be replaced.

Inverter 4KVA/5KVA

R233: 14-110022-00G (RES CHIP TF 1/4W 22 F 1206)

Note: If R233 is damaged, please replace U15 together. U15: 11-104003-00G (IC PWM CNTL UTC/UC3845A 8P/SOP-8 SMD)

Inverter 4KVA/5KVA

Parts	Attribute	Reference values	Failure status
D17/D18/D20/D21	Resistor	+ to -: 270k	Short or explosion
		- to +: 800k	
	Diode	+ to -: 0.57V	
		- to +: OL	
Q37	Resistor	GS: 29k	Short or explosion
		GD: 336k	
		DS: 550k	
	Diode	SD: 0.5V	
		DS: OL	
R233	Resistor	22 ohm	Open or other values
U15	Resistor	PIN7 TO PIN5: 42k	Short or explosion
		PIN6 TO PIN5: 30k	

3.7 Check the battery switching power supply circuit

Q36: 11-320005-00G (MOSFET IR/IRF640N PBF 18A 200V N BULK TO-220) D53: 11-200026-00G (D PAJ/UF202 2A 200V UFST AXI TAP) R205/R215: 14-600017-00G (RES 3W 0.15 J N-IND) In the new version, R205 is N/A.

D54: 11-200093-00G (D ON/MUR460RLG 4A 600V UFST RAD AXI DO-201AD TAP)

D67/D70: 11-210009-00G (D PANJIT/UF302 3A 200V UFST AXI BULK) or 11-200179-00G (D IO/HER303 3A 200V UFST AXI DO-27 TAP)

R126/R217: 14-110010-00G (RES CHIP TF 1/4W 10 F 1206) D51: 11-210001-00G (D PAJ 1N4148W 0.15A 75V SMD)

Note: If R126 or R127 is damaged, please replace U10 together.

U10: 11-004006-00G (IC PWM CNTL ST/UC3845B DIP-8P)

Parts	Attribute	Reference values	Failure status
D53	Resistor	+ to -: 276k	Short or explosion
		- to +: OL	
	Diode	+ to -: 0.53V	
		- to +: OL	
Q36	Resistor	GS: 16k	Short or explosion
		GD: OL	
		DS: OL	
	Diode	SD: 0.52V	
		DS: OL	
R205/R215	Resistor	0.15 ohm	Open or other values
D54	Resistor	+ to -: 2.5k	Short or explosion
		- to +: 3.9k	
	Diode	+ to -: 0.44V	
		- to +: 0.68V	
D67	Resistor	+ to -: 100k	Short or explosion
		- to +: 500k	
	Diode	+ to -: 0.43V	
		- to +: 2.6V	
D70	Resistor	+ to -: 235.2k	
		- to +: 2 Meg	
	Diode	+ to -: 0.43V	
		- to +: 2.7V	
R126/R217	Resistor	10 ohm	Open or other values
D51	Resistor	+ to -: 240k	
		- to +: OL	
	Diode	+ to -: 0.6V	
		- to +: OL	
U10	Resistor	PIN7 TO PIN5: 2k	Short or explosion
		PIN6 TO PIN5: 16k	

Inverter 4KVA/5KVA

Note: When 03 fault happens, and you couldn't find other damage, please check TX9!!

3.8 Check the reversed protection MOSFETs on DC side

Before you open the closure, you can measure it as below:

Measure the resistor between the PV- and BAT-.

Parts	Attribute	Reference values	Failure status
PV- to BAT-	Resistor	>10k	Short

If it is short, you should replace the mosfet on the main board:

Q42/Q58/Q44/Q45: 11-320076-00G MOSFET IR/IRFB3006GPBF 195A 60V NPN BULK TO-220

3.9 Check the current sharing module of control board

Parts	Attribute	Reference values	Failure status
R151/R150	Resistor	10 or 100 kohm	Short or other values
D24/D25	Resistor	PIN 1 to 2: >15K	Short or explosion
		PIN 2 to 1: >50K	
		PIN 1 to 3: >50K	
		PIN 3 to 1: >15K	
	Diode	PIN 1 to 2: 0.287V	
		PIN 2 to 1: 1.5V	
		PIN 1 to 3: 1.5V	

Inverter 4KVA/5KVA

PIN 3 to 1: 0.287V

The pin definition of D24 and D25 shows as below:

3.10 Check the NTC circuit

There are three NTCs on the main board, one is for DC-DC heatsink, one is for transformer, and the last one is for INV heatsink.

Please check these three NTCs if the inverter came out 02 error.

DC-DC heatsink

The NTC is located as below:

Please measure the parts as below:

Inverter 4KVA/5KVA

Parts	Attribute	Reference values	Failure status
R272	Resistor	700~750 ohm	Short or other values
NTC3_HS1 in CN8	Resistor	4~6k ohm	Short or other values
NTC3_HS1 separately	Resistor	15k ohm	Short or other values

Note: Please plug out the NTC from CN8, and measure the resistance of NTC directly. The result may not reflect the real value of the NTC if you measure the value on the main board. We also provide the value when NTC is plugged on the main board for reference.

If you are not convenient to test the resistance, you can unplug the NTC, and test the inverter again. If the fault doesn't happen again, it means that this NTC is wrong.

> Transformer

The NTC is located as below:

Please measure the parts as below:

Parts	Attribute	Reference values	Failure status
R267	Resistor	1.9~2.1k ohm	Short or other values
NTC1	Resistor	8~9k ohm	Short or other values

If the NTCs on the DC-DC and INV heatsink are OK, it means that NTC1 is wrong. You can also remove NTC1 from the main board for checking.

INV heatsink

The NTC is located as below:

Please measure the parts as below:

Parts	Attribute	Reference values	Failure status
R270	Resistor	700~750 ohm	Short or other values
NTC4_HS3 in CN4	Resistor	4~6k ohm	Short or other values
NTC4_HS3 separately	Resistor	15k ohm	Short or other values

Note: Please plug out the NTC from CN4, and measure the resistance of NTC directly. The result may not reflect the real value of the NTC if you measure the value on the main board. We also provide the value when NTC is plugged on the main board for reference.

If you are not convenient to test the resistance, you can unplug the NTC, and test the inverter again. If the fault doesn't happen again, it means that this NTC is wrong.

3.11 Check the fan driver on the main board

The parts of fan driver are marked as below:

Parts	Attribute	Reference values	Failure status
R118	Resistor	9.9-10k ohm	Short or other values
R114	Resistor	100 ohm	Short or other values
R120	Resistor	9.98-10k ohm	Short or other values
R121	Resistor	3.96-4.02k ohm	Short or other values
R115	Resistor	100 ohm	Short or other values
R119	Resistor	9.98-10k ohm	Short or other values
R127	Resistor	1.86-2k ohm	Short or other values
R126	Resistor	1.7-2k ohm	Short or other values
R122	Resistor	0.97-1k ohm	Short or other values
D48/D56	Resistor	+ to -: 240k	Short or other values
		- to +: OL	
	Diode	+ to -: 0.6V	
		- to +: OL	

4. Assembling guide

4.1 INVERTER PWM 4KVA/5KVA

4.2 INVERTER MPPT 4KVA/5KVA (OLD VERISON)

The steps are similar with INVERTER PWM 4KVA/5KVA, the difference is focused on SCC board part. Here we only show some critical steps to tell you how to replace SCC board.

